Turbulent Flow through Idealized Emergent Vegetation

نویسنده

  • T. Stoesser
چکیده

This paper presents results of several large-eddy simulations LES of turbulent flow in an open channel through staggered arrays of rigid, emergent cylinders, which can be regarded as idealized vegetation. In this study, two cylinder Reynolds numbers, RD =1,340 and RD=500, and three vegetation densities are considered. The LES of the lowest density and at RD=1,340 corresponds to a recently completed laboratory experiment, the data of which is used to validate the simulations. Fairly good agreement between calculated and measured firstand second-order statistics along measurement profiles is found, confirming the accuracy of the simulations. The high resolution of the simulations enables an explicit calculation of drag forces, decomposed into pressure and friction drag, that are exerted on the cylinders. The effect of the cylinder Reynolds number and the cylinder density on the drag and hence on the flow resistance is quantified and in agreement with previous experimental studies. Turbulence structures are visualized through instantaneous pressure fluctuations, isosurfaces of the Q-criterion and contours of vertical vorticity in horizontal planes. Analysis of velocity time signals and distributions of drag and lift forces over time reveals that flow and turbulence are more influenced by the vegetation density than by the cylinder Reynolds number. DOI: 10.1061/ ASCE HY.1943-7900.0000153 CE Database subject headings: Vegetation; Turbulent flow; Drag; Flow resistance. Author keywords: Vegetation; Turbulence; LES; Drag; Flow resistance; Coherent structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a coupled wave-flow-vegetation interaction model

Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-AtmosphereWave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) ...

متن کامل

Experimental Study on the Impact of Emergent Vegetation on Flow

Vegetation growing in the water along rivers has been the subject of several studies since it was recognized that it could have a significant impact on the water flow. It may increases resistance to flow and causes higher water levels. Also, it has affects on the turbulent structure such as the mean velocity profiles. For flow of water through emergent vegetation, previous investigations show d...

متن کامل

Mean and turbulent velocity fields near rigid and flexible plants and the implications for deposition

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. [1] The transport of fine sediment and organic matter plays an important role in the nutrient dynamics of shallow a...

متن کامل

Large Eddy Simulation of Fully-Developed Turbulent Flow Through Submerged Vegetation

Large Eddy Simulations (LES) are performed for an open channel flow through submerged vegetation with a water depth (h) to plant height (hp) ratio of h/hp=1.5 according to the experimental configuration of Fairbanks and Diplas (1998). Fairbanks and Diplas measured longitudinal and vertical velocities as well as turbulence intensities along several verticals in the flow and the data are used for...

متن کامل

Drag, turbulence, and diffusion in flow through emergent vegetation

Aquatic plants convert mean kinetic energy into turbulent kinetic energy at the scale of the plant stems and branches. This energy transfer, linked to wake generation, affects vegetative drag and turbulence intensity. Drawing on this physical link, a model is developed to describe the drag, turbulence and diffusion for flow through emergent vegetation which for the first time captures the relev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010